1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. ℝ^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. 中文
  62. 55. notice
  63. 56. feature
  64. 逻辑
  65. 57. 逻辑
  66. 58. 集合论
  67. 59. 映射
  68. 60. 序
  69. 61. 组合
  70. 微积分
  71. 62. 实数
  72. 63. 数列极限
  73. 64. ℝ^n
  74. 65. Euclidean 空间
  75. 66. Minkowski 空间
  76. 67. 多项式
  77. 68. 解析 (Euclidean)
  78. 69. 解析 (Minkowski)
  79. 70. 解析 struct 的操作
  80. 71. 常微分方程
  81. 72. 体积
  82. 73. 积分
  83. 74. 散度
  84. 75. 网极限
  85. 76. 紧致
  86. 77. 连通
  87. 78. 拓扑 struct 的操作
  88. 79. 指数函数
  89. 80. 角度
  90. 几何
  91. 81. 流形
  92. 82. 度规
  93. 83. 度规的联络
  94. 84. Levi-Civita 导数
  95. 85. 度规的曲率
  96. 86. Einstein 度规
  97. 87. 常截面曲率
  98. 88. simple-symmetric-space
  99. 89. 主丛
  100. 90. 群作用
  101. 91. 球极投影
  102. 92. Hopf 丛
  103. 场论
  104. 93. 非相对论点粒子
  105. 94. 相对论点粒子
  106. 95. 纯量场
  107. 96. 纯量场的守恒流
  108. 97. 非相对论纯量场
  109. 98. 光锥射影
  110. 99. 时空动量的自旋表示
  111. 100. Lorentz 群
  112. 101. 旋量场
  113. 102. 旋量场的守恒流
  114. 103. 电磁场
  115. 104. 张量场的 Laplacian
  116. 105. Einstein 度规
  117. 106. 相互作用
  118. 107. 谐振子量子化
  119. 108. 旋量场杂项
  120. 109. 参考

note-math

algebraic structure or

There are two ways to extend to

  • Linear Algebra

Example Real 2-dimensional space.

and the distributive law. The construction of property-linear-algebra uses the property-real-algebra of

  • Algebra

Eaxmple [complex-number] Complex number.

Addition is the same as . Multiplication uses or and the distributive law

one of motivation of complex-number or is the characteristic polynomial equation of harmonic-oscillator

Eaxmple [split-complex-number] Split-complex number.

also cf. complex-numbler-geometric-meaning

Addition is the same as . Multiplication uses or and the distributive law

[linear] linear structure

struct homomorphism := a mapping that preserves struct

Example linear struct hom

  • map to
  • map to

so map to or abbreviated as

linear struct hom is also called linear mapping

This homomorphism can also be considered similar to the distributive law of scalar multiplication. Vector addition followed by linear mapping is equivalent to linear mapping followed by vector addition.

bijection to itself + hom = isomorphism

linear isomorphism of :=

algebraic structure

Example

  • complex numbers, quaternions, octonions
  • Matrix algebra. But conceptually and meaningfully, it doesn't seem like a good generalization of algebra. So we need other restrictions, e.g. normed algebra, composition algebra

[normed-algebra]

The multiplication of has the property

The spatial quadratic form has the property

For algebra, we expect the property

Example

def complex conjugate

. This is spatial

by

. This is spacetime

by

null elements have no multiplicative inverse

  • give

  • give

New imaginary unit construction method

Eaxmple [quaternion]

Use a new imaginary unit in the complex number with

  • Define other imaginary units

  • Different imaginary units anticommute

  • Invert the imaginary unit conjugate or

Anti-commutation + conjugate inversion makes , and also gives

Imaginary unit associativity

Satisfies norm multiplication

Example If split complex is used, then , so both give split quaternion

  • give

  • give

Eaxmple [octonion] Using a new imaginary unit in quaternion

Define other imaginary units

Anti-commutation of different imaginary units

Anti-associativity of different imaginary units if

Imaginary unit conjugate inversion

Anti-commutation + conjugate inversion makes , and also gives

Question Anti-associativity is needed for norm multiplication

gives octonion . split octonion similarly, with signature

  • give (Question)

  • give

What is obtained from and the associative law of imaginary units is another algebra , which does not satisfy

Question Anti-combination cannot be further extended to sixteen dimensions and beyond?

[imaginary-automorphism] The new imaginary unit construction method is not coordinate-free, so we need to consider the automorphism of imaginary units with . Since it preserves multiplication, it automatically preserves distance

Example for it's symmetric

Question (ref-21, p.35) (ref-22, p.85)

  • for
  • for .

as automorphism of illustrates that, without additional structure, such as multiplication and , only a simple linear space structure, it is impossible to give special groups like . (Although it is said that all compact groups can have matrix representations.)

[affine] affine structure

Change the origin, translate

hom additionally keeps abbreviated as