1. notice
  2. 中文
  3. 1. feature
  4. 逻辑
  5. 2. 逻辑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 微积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空间
  15. 11. Minkowski 空间
  16. 12. 多项式
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操作
  20. 16. 常微分方程
  21. 17. 体积
  22. 18. 积分
  23. 19. 散度
  24. 20. 网极限
  25. 21. 紧致
  26. 22. 连通
  27. 23. 拓扑 struct 的操作
  28. 24. 指数函数
  29. 25. 角度
  30. 几何
  31. 26. 流形
  32. 27. 度规
  33. 28. 度规的联络
  34. 29. Levi-Civita 导数
  35. 30. 度规的曲率
  36. 31. Einstein 度规
  37. 32. 常截面曲率
  38. 33. simple-symmetric-space
  39. 34. 主丛
  40. 35. 群作用
  41. 36. 球极投影
  42. 37. Hopf 丛
  43. 场论
  44. 38. 非相对论点粒子
  45. 39. 相对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非相对论纯量场
  49. 43. 光锥射影
  50. 44. 时空动量的自旋表示
  51. 45. Lorentz 群
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 张量场的 Laplacian
  56. 50. Einstein 度规
  57. 51. 相互作用
  58. 52. 谐振子量子化
  59. 53. 旋量场杂项
  60. 54. 参考
  61. English
  62. 55. notice
  63. 56. feature
  64. logic-topic
  65. 57. logic
  66. 58. set-theory
  67. 59. map
  68. 60. order
  69. 61. combinatorics
  70. calculus
  71. 62. real-numbers
  72. 63. limit-sequence
  73. 64. ℝ^n
  74. 65. Euclidean-space
  75. 66. Minkowski-space
  76. 67. polynomial
  77. 68. analytic-Euclidean
  78. 69. analytic-Minkowski
  79. 70. analytic-struct-operation
  80. 71. ordinary-differential-equation
  81. 72. volume
  82. 73. integral
  83. 74. divergence
  84. 75. limit-net
  85. 76. compact
  86. 77. connected
  87. 78. topology-struct-operation
  88. 79. exponential
  89. 80. angle
  90. geometry
  91. 81. manifold
  92. 82. metric
  93. 83. metric-connection
  94. 84. geodesic-derivative
  95. 85. curvature-of-metric
  96. 86. Einstein-metric
  97. 87. constant-sectional-curvature
  98. 88. simple-symmetric-space
  99. 89. principal-bundle
  100. 90. group-action
  101. 91. stereographic-projection
  102. 92. Hopf-bundle
  103. field-theory
  104. 93. point-particle-non-relativity
  105. 94. point-particle-relativity
  106. 95. scalar-field
  107. 96. scalar-field-current
  108. 97. scalar-field-non-relativity
  109. 98. projective-lightcone
  110. 99. spacetime-momentum-spinor-representation
  111. 100. Lorentz-group
  112. 101. spinor-field
  113. 102. spinor-field-current
  114. 103. electromagnetic-field
  115. 104. Laplacian-of-tensor-field
  116. 105. Einstein-metric
  117. 106. interaction
  118. 107. harmonic-oscillator-quantization
  119. 108. spinor-field-misc
  120. 109. reference

note-math

algebraic structure or

There are two ways to extend to

  • Linear Algebra

Example Real 2-dimensional space.

and the distributive law. The construction of property-linear-algebra uses the property-real-algebra of

  • Algebra

Eaxmple [complex-number] Complex number.

Addition is the same as . Multiplication uses or and the distributive law

one of motivation of complex-number or is the characteristic polynomial equation of harmonic-oscillator

Eaxmple [split-complex-number] Split-complex number.

also cf. complex-numbler-geometric-meaning

Addition is the same as . Multiplication uses or and the distributive law

[linear] linear structure

struct homomorphism := a mapping that preserves struct

Example linear struct hom

  • map to
  • map to

so map to or abbreviated as

linear struct hom is also called linear mapping

This homomorphism can also be considered similar to the distributive law of scalar multiplication. Vector addition followed by linear mapping is equivalent to linear mapping followed by vector addition.

bijection to itself + hom = isomorphism

linear isomorphism of :=

algebraic structure

Example

  • complex numbers, quaternions, octonions
  • Matrix algebra. But conceptually and meaningfully, it doesn't seem like a good generalization of algebra. So we need other restrictions, e.g. normed algebra, composition algebra

[normed-algebra]

The multiplication of has the property

The spatial quadratic form has the property

For algebra, we expect the property

Example

def complex conjugate

. This is spatial

by

. This is spacetime

by

null elements have no multiplicative inverse

  • give

  • give

New imaginary unit construction method

Eaxmple [quaternion]

Use a new imaginary unit in the complex number with

  • Define other imaginary units

  • Different imaginary units anticommute

  • Invert the imaginary unit conjugate or

Anti-commutation + conjugate inversion makes , and also gives

Imaginary unit associativity

Satisfies norm multiplication

Example If split complex is used, then , so both give split quaternion

  • give

  • give

Eaxmple [octonion] Using a new imaginary unit in quaternion

Define other imaginary units

Anti-commutation of different imaginary units

Anti-associativity of different imaginary units if

Imaginary unit conjugate inversion

Anti-commutation + conjugate inversion makes , and also gives

Question Anti-associativity is needed for norm multiplication

gives octonion . split octonion similarly, with signature

  • give (Question)

  • give

What is obtained from and the associative law of imaginary units is another algebra , which does not satisfy

Question Anti-combination cannot be further extended to sixteen dimensions and beyond?

[imaginary-automorphism] The new imaginary unit construction method is not coordinate-free, so we need to consider the automorphism of imaginary units with . Since it preserves multiplication, it automatically preserves distance

Example for it's symmetric

Question (ref-21, p.35) (ref-22, p.85)

  • for
  • for .

as automorphism of illustrates that, without additional structure, such as multiplication and , only a simple linear space structure, it is impossible to give special groups like . (Although it is said that all compact groups can have matrix representations.)

[affine] affine structure

Change the origin, translate

hom additionally keeps abbreviated as