1. notice
  2. 中文
  3. 1. feature
  4. 逻辑
  5. 2. 逻辑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 微积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空间
  15. 11. Minkowski 空间
  16. 12. 多项式
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操作
  20. 16. 常微分方程
  21. 17. 体积
  22. 18. 积分
  23. 19. 散度
  24. 20. 网极限
  25. 21. 紧致
  26. 22. 连通
  27. 23. 拓扑 struct 的操作
  28. 24. 指数函数
  29. 25. 角度
  30. 几何
  31. 26. 流形
  32. 27. 度规
  33. 28. 度规的联络
  34. 29. Levi-Civita 导数
  35. 30. 度规的曲率
  36. 31. Einstein 度规
  37. 32. 常截面曲率
  38. 33. simple-symmetric-space
  39. 34. 主丛
  40. 35. 群作用
  41. 36. 球极投影
  42. 37. Hopf 丛
  43. 场论
  44. 38. 非相对论点粒子
  45. 39. 相对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非相对论纯量场
  49. 43. 光锥射影
  50. 44. 时空动量的自旋表示
  51. 45. Lorentz 群
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 张量场的 Laplacian
  56. 50. Einstein 度规
  57. 51. 相互作用
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

(ℝ,+,⋅) algebraic structure or

ℝ∈ Set +ℝ2→ℝ⋅ℝ2→ℝ property-real-algebra

There are two ways to extend to ℝ𝑛

  • Linear Algebra
ℝ𝑛∈ Set +(ℝ𝑛)2→ℝ𝑛⋅ℝ×ℝ𝑛→ℝ𝑛 property-linear-algebra

Example Real 2-dimensional space. (𝑥𝑦),(𝑥′𝑦′)∈ℝ2,𝑎∈ℝ

(𝑥𝑦)+(𝑥′𝑦′)=(𝑥+𝑥′𝑦+𝑦′)𝑎(𝑥𝑦)=(𝑎𝑥𝑎𝑦)

and the distributive law. The construction of ℝ𝑛 property-linear-algebra uses the property-real-algebra of ℝ

  • Algebra
(ℝ𝑛)∈ Set +(ℝ𝑛)2→ℝ𝑛⋅(ℝ𝑛)2→ℝ𝑛 property-algebra

Example complex-number_(tag) Complex number. 𝑥+𝑦 i,𝑥′+𝑦′ i ∈ℂ

Addition is the same as ℝ2. Multiplication uses i 2=−1 or 1i =−i and the distributive law

(𝑥+𝑦 i)(𝑥′+𝑦′ i)=(𝑥𝑥′−𝑦𝑦′)+(𝑥𝑦′+𝑦𝑥′) i

one of motivation of complex-number or 𝑧2=−1 is the characteristic polynomial equation of #link(<harmonic-oscillator>)[] 𝜉2+𝜔2=0

Example split-complex-number_(tag) Split-complex number. 𝑥+𝑦 i split,𝑥′+𝑦′ i  split ∈ℂ split

Addition is the same as ℝ2. Multiplication uses i split 2=1 or 1i split = i split and the distributive law

(𝑥+𝑦 i split)(𝑥′+𝑦′ i split)=(𝑥𝑥′+𝑦𝑦′)+(𝑥𝑦′+𝑦𝑥′) i split

linear_(tag) ℝ𝑛 linear structure

struct homomorphism := a mapping 𝑓 that preserves struct

Example linear struct hom 𝑓:ℝ𝑛→ℝ𝑚

  • 𝑥∈ℝ𝑛 map to 𝑓(𝑥)∈ℝ𝑚
  • +:(ℝ𝑛)2→ℝ𝑛 map to 𝑓(+):(ℝ𝑚)2→ℝ𝑚

so 𝑓(𝑥+𝑥′) map to 𝑓(𝑥)𝑓(+)𝑓(𝑥′) or abbreviated as 𝑓(𝑥)+𝑓(𝑥′)

linear struct hom is also called linear mapping

bijection to itself + 𝑓,𝑓−1 hom = isomorphism

linear isomorphism of ℝ𝑛 := GL(𝑛,ℝ)

ℝ𝑛 algebraic structure

Example

  • ℂ complex numbers, ℍ quaternions, 𝕆 octonions
  • Matrix algebra. But conceptually and meaningfully, it doesn't seem like a good generalization of ℝ algebra. So we need other restrictions, e.g. normed algebra, composition algebra

normed-algebra_(tag)

The multiplication of ℝ has the property |𝑥𝑦|=|𝑥||𝑦|

The ℝ𝑛 spatial quadratic form has the property ⟨𝑎𝑥⟩2=𝑎2⟨𝑥⟩2

For ℝ𝑛 algebra, we expect the property ⟨𝑥𝑦⟩2=⟨𝑥⟩2⟨𝑦⟩2

Example

  • ℂ

def complex conjugate i ∗=− i

(𝑥+𝑦 i)∗≔𝑥+𝑦 i ∗=𝑥−𝑦 i

𝑧𝑧∗=𝑧∗𝑧=|𝑧|2=𝑥2+𝑦2. This is ℝ2 spatial

|𝑧𝑧′|2=|𝑧|2|𝑧′|2 by

(𝑥𝑥′−𝑦𝑦′)2+(𝑥𝑦′+𝑦𝑥′)2=𝑥2𝑥′2+𝑦2𝑦′2+𝑥2𝑦′2+𝑦2𝑥′2=(𝑥2+𝑦2)(𝑥′2+𝑦′2)
  • ℂsplit

𝑧𝑧∗=𝑧∗𝑧=|𝑧|2=𝑥2−𝑦2. This is ℝ1,1 spacetime

|𝑧𝑧′|2=|𝑧|2|𝑧′|2 by

(𝑥𝑥′+𝑦𝑦′)2−(𝑥𝑦′+𝑦𝑥′)2=𝑥2𝑥′2+𝑦2𝑦′2−𝑥2𝑦′2−𝑦2𝑥′2=(𝑥2−𝑦2)(𝑥′2−𝑦′2)

null elements have no multiplicative inverse

  • exp(Im(ℂ)) give U (1,ℂ)≃𝕊≃SO(2)

  • exp(Im(ℂsplit)) give U (1,ℂsplit)≃ℍ𝕪≃SO(1,1)

New imaginary unit construction method

Example

Use a new imaginary unit i2 in the complex number 𝑥0+𝑥1 i1 with (i 1)2=−1

  • Define other imaginary units i 3≔ i 1 i2

  • Different imaginary units anticommute i 2 i 1≔− i 1 i2

  • Invert the imaginary unit conjugate or 1i =−i

    • (i 2)∗≔− i2
    • (i 3)∗≔− i3

Anti-commutation + conjugate inversion makes 𝑥∗𝑥=𝑥𝑥∗=|𝑥|2, and also gives (𝑥𝑥′)∗=𝑥′∗𝑥∗

Imaginary unit associativity i 𝑖″(i 𝑖′ i𝑖)=(i 𝑖″ i𝑖′) i𝑖

Satisfies norm multiplication |𝑥𝑦|2=|𝑥|2|𝑦|2

(i 3)2= i 1 i 2 i 1 i 2=− i 12 i 22= i22

(i 2)2=−1 give ( i 3)2=−1 and ℍ( i 2)2=+1 give ( i 3)2=+1 and ℍ split  with (2,2) signature

Example If split complex i 12=1 is used, then (i 3)2=− i 12 i 22=− i22, so i 22=±1 both give split quaternion

  • exp(Im(ℍ)) give U (1,ℍ)≃𝕊3↠SO(3)

  • exp(Im(ℍsplit)) give U (1,ℍsplit)≃ℚ2,2(1)↠SO(1,2)

Example Using a new imaginary unit i4 in quaternion 𝑥0+𝑥1 i 1+𝑥2 i 2+𝑥3 i3

Define other imaginary units

i 5≔i 1 i 4 i 6≔i 2 i 4 i 7≔i 3 i 4

Anti-commutation of different imaginary units i 𝑖′ i 𝑖≔− i 𝑖 i𝑖′

Anti-associativity of different imaginary units i 𝑖″(i 𝑖′ i𝑖)≔−(i 𝑖″ i𝑖′) i𝑖 if i 𝑖″≠± i 𝑖′ i𝑖

Imaginary unit conjugate inversion (i 𝑖)∗=− i𝑖

Anti-commutation + conjugate inversion makes 𝑥∗𝑥=𝑥𝑥∗=|𝑥|2, and also gives (𝑥𝑥′)∗=𝑥′∗𝑥∗

Question Anti-associativity is needed for norm multiplication |𝑥𝑦|2=|𝑥|2|𝑦|2

(i 4)2=−1 gives octonion 𝕆. split octonion similarly, with (4,4) signature

  • exp(Im(𝕆)) give U (1,𝕆)≃𝕊7↪SO(7) (Question)

  • exp(Im(𝕆split)) give U (1,𝕆split)≃ℚ4,4(1)↪SO(3,4)

What is obtained from ℍ and the associative law of imaginary units is another algebra ℍ⊕ℍ, which does not satisfy |𝑥𝑦|2=|𝑥|2|𝑦|2

Question Anti-combination cannot be further extended to sixteen dimensions and beyond

The new imaginary unit construction method is not coordinate-free, so we need to consider the automorphism of imaginary units 𝑓:Im(𝕂)→Im(𝕂) with 𝑓(𝑥𝑦)=𝑓(𝑥)𝑓(𝑦). Since it preserves multiplication, it automatically preserves distance

Example for ℂ it's ℤ2= O (1) symmetric i →−i

Question

  • SO(3) for ℍ
  • 𝐺2 for 𝕆. dim 𝐺2=14<21= dim (SO(7))

𝐺2 as automorphism of 𝕆 illustrates that, without additional structure, such as multiplication 𝑥⋅𝑦 and |𝑥⋅𝑦|2=|𝑥|2|𝑦|2, only a simple linear space structure, it is impossible to give special groups like 𝐺2. (Although it is said that all compact groups can have matrix representations.)

affine_(tag) ℝ𝑛 affine structure

Change the origin, translate

hom additionally keeps 𝑓(𝑥−𝑦)=𝑓(𝑥)𝑓(−)𝑓(𝑦) abbreviated as 𝑓(𝑥)−𝑓(𝑦)